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Investigating students’ conceptions of covariation patterns between quantities situated 
within contextual settings engenders enriched, deep understandings of functional 
relationships. This paper presents data from a case study of a student (Mary) who solved 
quadratic contextual problems. Mary’s schemes, constructed from quadratically related 
quantities and patterns of additive rates, fostered the development of an iterative, summative 
conceptualisation of quadratics in contrast to the product view. Findings support the use of 
contextual problems to motivate students to think reflectively and mathematically. 

As educators we are perpetually concerned with determining and developing better 
ways of presenting mathematics to students to promote deeper conceptual understandings. 
The constructivist’s perspective encourages educators to focus on and listen to what 
students have to say and do when solving problems. Various Curriculum Standards 
(NCTM, 1989, 2000; NSW, 2002) exhort that students explore patterns and functional 
relationships in realistic situations and communicate their mathematical understanding and 
models effectively using multiple representations. This paper focuses on Mary’s strategies 
in solving a maximum quadratic contextual problem in terms of her interpretations of the 
situation, actions taken to resolve her problematics (i.e., conceptual obstacles) and multiple 
representations. Whilst struggling with competing interpretations and representations, she 
developed potentially useful schemes reflectively abstracted from explorations of 
numerical patterns of tabular data. The theoretical framework and methodology of the 
overall study in which Mary was one of four participants is briefly outlined followed by the 
data, a brief discussion and some conclusions based on Mary’s first two sessions.  

Theoretical Framework 

The theoretical framework is based on Piaget’s epistemology in which learners actively 
organize their experiences by constructing schemes to assimilate and/or accommodate new 
knowledge. Constructivists view mathematics as a human creation that historically evolves 
within cultural contexts through social interactions, reflection, communication and 
negotiation of meanings. Humans construct mathematical concepts to structure experience 
and to solve problems. (Confrey, 1991a, 1991b, 1994; Confrey & Doerr, 1996). 
Accordingly, mathematics can be created as a result of students’ actions in situations. 
Through reflective abstraction on their actions (i.e. abstraction of the relationship between 
actions and effects of those actions), students construct schemes, modify and/or apply them 
intentionally to achieve their goals. (Confrey, 1994; Confrey & Smith, 1994; Steffe, 1994; 
Hershkowitz, Schwarz & Dreyfus, 2001). When solving problems, students begin by 
identifying their problematics, acting on them and then reflecting on the results of those 
actions to create operations, followed by checks to determine whether problematics are 
resolved satisfactorily. The cyclic activities: problematic→actions→reflections, therefore 
                                                 
1 This study was part of the author’s doctoral dissertation supervised by Dr Jere Confrey at Cornell 
University. Some data reported here formed part of a presentation at the Multiliteracies and K-12 English 
Teaching Conference held at UNE on November 26, 2004 to illustrate the importance of critical literacies in 
mathematics. 
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consists of an anticipation, action and reflection. If proven successful, it is repeated in other 
circumstances to create a “scheme,” a more automated response to a situation (Confrey, 
1991b, p. 120). Over time, these schemes emerge from assimilations of experience to ways 
of knowing, have duration and repetition, and are more easily examinable than isolated 
actions (Confrey, 1994, p. 320). Assimilating an object into a scheme simultaneously 
satisfies a need and confers on an action a cognitive structure (Thompson, 1994, p. 182). 
Tasks are selected for their potential to invite and motivate students to engage with the 
mathematical idea and should yield to multiple interpretations and resulting approaches 
(Confrey, 1991a, 1994; Confrey & Doerr, 1996), hence the use of contextual problems 
(problems with realistic contexts). Multiliteracies in mathematics include the requisite 
critical skills to interpret the mathematics embedded in various representations such as the 
numerical, symbolic, algebraic, and graphical. Solving contextual problems therefore 
effectively demands that students have the multiliteracy skills to decode the question in 
order to respond appropriately and ability to critically appraise the problem context so that 
relevant, embedded mathematical tasks are identified (Zevenbergen, Dole & Wright, 2004) 
as well as shift flexibly between different representations. By listening to students, we learn 
from them; our mathematics understandings are challenged and enriched as a result of it. 
Hence, analyzing student data can prompt the re-examination and extension of one’s 
mathematical understanding to new territories of mathematical meanings (Confrey & 
Smith, 1994, p. 136).  

Functions play a central and unifying role in school mathematics (Confrey, 1991a; 
Romberg, Carpenter, & Fennema, 1993, NCTM, 1989; Knuth, 2000). The 2000 NCTM 
Standards recommend that students must learn mathematics with understanding, actively 
building new knowledge from experience and prior knowledge, and consider the study of 
patterns and functions as one of its central themes. The literature on functions describes 
two views. The correspondence view is more consistent with the modern set-theoretic 
formal definition associated with Dirichlet-Bourbaki, and the covariational view is 
reflective of the historical development of functions and consistent with Euler’s classical 
view (Smith & Confrey, 1994, p. 335). Prevalent in school mathematics is the 
correspondence view. Students primarily work with algebraic forms (analytic expressions) 
of functions as correspondence rules. Their understanding is predominantly built from 
using these algebraic expressions as algorithmic procedures that take inputs to generate 
corresponding output values (Confrey & Smith, 1994; Smith & Confrey, 1994; Knuth, 
2000). In contrast, a more intuitive approach is the covariation view. Students observe and 
reflect upon covarying patterns with quantities in tabular form; describe patterns in one 
column in relation to values in another and construct rates of changes in terms of repeated 
action in each column (Confrey & Doerr, 1996; Smith & Confrey, 1994). Coordinating 
multiple representations and reflecting upon their actions, students construct viable 
schemes thus engendering a more natural view of algebraic symbolism as the need to 
codify actions and operations that one takes to describe variations of quantities, rather than 
an abstract, symbolic system devoid of contextual origins (Confrey & Smith, 1994; Smith 
& Confrey, 1994). It also gives students ownership of the mathematics they construct.  

The literature presents multiple perspectives on rates of change and the related concept 
of ratio (see Thompson, 1994). The most relevant one to this paper is that by Confrey and 
Smith (1994) whose situational view is similar to Behr, Lesh, Post and Silver (1983) and 
others. However, Confrey and Smith expand it further by proposing a more grounded 
approach to “rate” that emphasizes and values both quantities that are being compared 
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(numerator and denominator), and indicates the kinds of mental actions that are applied to 
the quantities. For example, ratio is defined as the “invariance across a set of equivalent 
proportions” while rate is defined as “a unit per unit comparison”. Conceptualising rate as 
an intentional, coordinated and repeated action between two quantities recognises that rate 
can be constant (additively or multiplicatively) or varying whilst ratio remains constant. 
This view “allows one to explain uniformity of unit to unit comparisons (homogeneity) and 
the variation in rates over time (non-homogeneity)” (Confrey & Smith, 1994, p. 153-154). 
The case study reported here investigated in-depth the development of students’ schemes 
constructed from representations and abstractions of numerical patterns of additive rates of 
change to model quadratic contextual situations (see Afamasaga-Fuata’i, 1991 for details). 
Additive rates follow an arithmetic progression such as those for polynomials whilst 
multiplicative rates are geometric progressions such as with rates of exponential functions. 

Methodology 

The research methodology was a constructivist teaching experiment (Cobb, Confrey, 
diSessa, Lehrer, & Schauble, 2003; Duit & Confrey, 1996; Steffe & D'Ambrosio, 1996; 
Duit, Treagust, & Mansfield, 1996). It was set out to model students’ developmental 
understandings of mathematical concepts. The inclusion of realistic contexts was deliberate 
to provide critical sites for students’ mathematizing activities (Confrey, 1994, 1991a; 
NCTM, 1989) and to foster the construction of quadratic schemes. Students were 
encouraged to use Function Probe (FP) (Confrey, 1991c), a multiple representational 
software, to support their activities when making, confirming and revising conjectures. Of 
particular importance was FP’s use to automatically generate table values (i.e. x, y, ∆x, or 
∆y) with the input of an equation to fill columns, or manually one by one where the symbol 
∆ denotes differences between consecutive values. Individual interviews were interactive 
and centred around a set of problems. The researcher would ask probing questions to gain 
insights into a student's constructions, interpretations and reasoning processes (Cobb et al, 
2003; Confrey, 1994; Duit & Confrey, 1996; Confrey & Doerr, 1996; Thompson, 1994) 
whilst simultaneously promoting more self-reflection and a stronger approach to 
knowledge construction for the student (Confrey, 1991a). The nature of probing questions 
depends on student responses, need for clarifications and justifications, and/or potential 
pathways that arise which promise greater insight into powerful ways of thinking 
(Thompson, 1994, p.195). It is acknowledged that communicating one's rationale and 
reasoning processes to another simultaneously shapes and transforms one's reflective 
thinking and schemes of internalised actions (Confrey, 1994, p. 321). All problem-solving 
sessions were videotaped; sessions were approximately two-hours each, and held three-
times weekly for at least 6-weeks. Resources available included pen-and-paper and the 
software FP. A pre-test was conducted to select four students who demonstrated a solid 
understanding of linear functions. Mary was an American, second year university arts 
student at the time of the study with a high school general mathematics background. Data 
collected included students’ worksheets and FP files, researcher’s notes, and transcripts of 
each session.  The starting point is the familiarization tutorial where students learn to use 
FP whilst solving a linear contextual problem. They investigate distances of nth posts from 
a house with a gate of width 4-feet attached to it on one side while the opposite side has the 
first post (n = 1) with other posts spaced 3-feet apart (to be referenced the gate-problem). 
The distance-equation d = 3(n – 1) + 4 is given to students.  
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Data and Analysis 

Mary’s cycles of activities are described below as she developed a robust 
conceptualisation consistent with her preferred interpretation. To distinguish between the 
researcher’s interpretations of Mary’s actions (in normal font) and Mary’s own words and 
symbols, the latter will be “italicised”  and enclosed in quotes. 

Multiple Interpretations and Representations 

The first contextual problem is as shown:  

Farmer Joe has records showing that if 25 avocado trees are planted, then each tree yields 500 
avocadoes (on the average). For each additional tree planted, the yield decreases by 10 avocadoes 
per tree. Determine the number of trees that would maximize total yield.  

Mary began by proposing various literal interpretations and multiple representations. 
Her initial conceptualization as the sum of “yield from 25 trees + yield from additional 
trees” was represented as “total yield = 500 + yield from additional trees” apparently 
conceived to be structurally similar to the distance-equation. It was also inconsistent with 
the phrase each tree yields 500 avocadoes (on the average) in the problem statement. In responding 
to probes, Mary referred to her linear schemes in which she connected the: (a) “number 3 in 
front of the (n - 1) term” of the distance-equation to the tabular “constant difference (∆d = 
3)” of the FP column and contextual condition of “3-feet equal spacing”, and (b) “constant 
4” to the contextual condition of “fixed gate-width of 4-feet”. Mary explained: “I’m trying 
to relate this (new problem) … I’m trying to find some kind of relationship so that it’s 
easier because I understand this (gate-problem) … it’s the same thing ... because … we 
have a starting point”. Whilst critically conceptualising total yield, Mary was 
simultaneously cognizant of two things; that the amounts of 500 and 25 gave an “initial 
amount of 12500” and her first conceptualisation requires modification to accurately 
represent her interpretation “increasing consecutive total yields, but with differences that 
are decreasing by 10 such as from 490 to 480 to 470”.  Subsequently, the revision became 
“500(n + 25) – 10(n + 25) = total yield” where “n”  is additional trees. However, 
numerical evaluations showed “constant differences of 490” not the expected “sequence of 
490, 480, 470”. Modifying once again her expression to “500(n +  25) – 10(n) = total 
yield”  produced total yields “12500, 12990, 13480, 13970” not the expected values 
“12500, 12990, 13470, 13940”. In terms of Thompson’s (1994) distinction between 
quantitative and numerical operations (p. 184-188), Mary quantitatively conceived total 
yield as the sum of two quantities, an initial amount and yields from additional trees, 
perhaps structurally similar to the distance-equation, but has yet to fully conceptualise the 
required numerical operations to construct the new quantity “yield from additional trees”. 
After much systematic modification and evaluation, Mary verbally re-affirmed the salient 
initial conditions and re-presented them on her worksheet as shown in Figure 1a. 

Strategically, Mary was recapitulating, reassessing, and reflectively thinking through 
her actions and multiple representations thus far as she contemplated a way forward. 
Whilst setting out her expected values in tabular form (see Figure 1b), Mary experienced a 
significant moment of insight (Barnes, 2000) – the “constant difference of 10” was similar 
to the “constant difference pattern of 3” in the gate-problem. This immediately signalled 
the opportunity to apply her linear schemes. Hence, after experimenting with, and 
evaluating various expressions, Mary derived the expression “(500 - 10n)” labelled “fruits 
gained” to illustrate the “starting average yield of 500 and decreasing yield of 10”, see 
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Figure 1c. For verification, Mary generated “y = 500 – 10n” values as shown in Figure 1d 
where “y” represented “yield per added tree”. 
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Figure 1. Mary’s multiple representations of yield per additional tree. 

Returning to her earlier total–yield problematic, she explained: “I’m trying to think of a 
way to … create a column in which … it will show the accumulation ... the cumulative … 
including the 25”. Acknowledging the inadequacy of “(25 x 500) + (500 – 10n)” to 
account for “cumulative totals”, she declared she wanted a “summation of 500 – 10n” to 
represent a “running total” from all additional trees and a formula for her operational 
scheme of iteratively adding new yield to previous total yield as illustrated by her 
procedural actions of “12500, 12500 + 490 = 12990, 12990 + 480 = 13470, 13470 + 470 
= 13940” . Mary represented this as “Total Yield = 12500 + ∑(500 – 10n)” where “∑” 
signified her “cumulative running total” of (500 – 10n) values. While thinking aloud, Mary 
generated t values by typing into FP formula “t = 12500 + (500 – 10n)” and “∆t” values 
using the ∆-menu command. A comparison of generated t values and handwritten ones on 
her worksheet (the latter are shown as columns a and ∆a in Figure 2a) showed a mismatch 
of ∆t and ∆a values. After further unsuccessful experimentation, she used the letter “t” to 
represent “Total yield” and “s” for cumulative yields “∑(500 – 10n)” and subdivided 
equation “Total Yield = 12500 + ∑(500 – 10n)” in two parts as shown in Figure 2b. Her 
ensuing dialectic among reflectively abstracting features of various algebraic 
representations (for s such as “s = n*y = n*(500-10n)”; “ s = ny + 10n” and “s = ny – 10n”) 
and tabular data (columns “b” and “s” in Figure 2c) was mediated by numeric evaluations 
of differences as shown in column “c = b – s”; c values quantitatively represented the 
increasing shortfall of equation “s = n(500 – 10n)” to match expected “b values”. Mary 
used the symbol “* ” to reinforce her strong belief that quantity s must be “n times another 
quantity” which was yet to be fully developed.  

To encourage an alternative approach, the interviewer asked: “Assuming that all trees 
were affected by the addition of new trees, how would that change your formula for total 
yield?” The response was immediate “Total Yield c = (n + 25)(500 - 10n)” where “c” 
represented the other interpretation. However, this was dismissed temporarily as it was not 
her preferred interpretation. Notwithstanding that, Mary re-considered, then argued that 
choosing equation c means quantitatively “c values are less than expected t values”, see 
Figure 2d. Illustrating further for n = 2, “ ∆t = 480 compared to ∆c = 220”; she pointed out 

1.                     25 trees = 500 
fruits/tree 

            Yield of        difference 
 additional trees 
25 500  

  
26 490  

 10 
27 480  

Fruits Gained =   500      –      10n 
 
 Distance d  =     3(n – 1)    +    4      
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“∆c was not accounting for 260 of the fruits” (i.e. “ ∆t - ∆c = 260)” . Extending her 
plausible reasoning (Lithner, 2000) forward from 27 (n = 2) to 28 (n = 3) trees, and 
backward to 25 (n = 0) and 26 (n = 1) trees, Mary’s numeric analysis confirmed 
“unaccounted for fruits” (q = ∆t - ∆c) were increasing by a “constant difference of 10 from 
250 each time a tree was added” (columns n, q and ∆q in Figure 2d). Subsequently, she 
conjectured that “t = c + ∑unaccounted for fruits”. Evidently, Mary attempted to: (i) 
develop an algebraic bridge between equations “c = (n + 25)(500 – 10n)” and “t = 12500 + 
∑(500 – 10n)”, and (ii) explore the potential value of ∆q (∆q = ∆(k – p) = ∆(∆t - ∆c)). 
However, Mary finished off the first session having established that “unaccounted for 
fruits” were increasing by 10, but had yet to algebraically represent it. 
 

 

 

 

        

  (a)       (b) 

          

            

 

 

     
(c)       (d) 

Figure 2. Multiple representations of total yields. 

In the subsequent session, Mary finalized her interpretation and algebraic 
representation to be c because: “it will make sense ... the more trees you plant … the less 
nutrients there are in the ground … and the less fruits produced by the tree”. She further 
recognized that the c was much easier to work with than t because “coming up with the 
cumulative formula is easier”. Determining maximum total yield (of 14060 at both 37 and 
38 trees) was a matter of extending FP generated values. Most importantly overall, Mary 
made significant progress in algebraically and numerically representing her preferred 
interpretation t in terms of: (a) an initial amount and summation “t = 12500 + ∑(500 – 
10n), (b) a known function and summation “t = c + ∑unaccounted for fruits”, and (c) an 
iterative and summative operational scheme. She also identified two ∆-variation patterns; 
those that are constant (∆d in gate-problem, ∆t in Figure 2a, and ∆q in Figure 2d) and those 
that vary (∆a in Figure 2a, k = ∆t and p = ∆c in Figure 2d). Her linear schemes were 
successfully applied in deriving yield per tree “(500 – 10n)”. Mary repeatedly used the 
expression “unaccounted for fruits” as a label to refer to the quantity “ ∆t – ∆c” (q in Figure 
2d) to argue for her preferred interpretation and was surprised that “differences of ∆t – ∆c” 
(i.e. ∆q) were constant.  

 t    =     12500       +          s 
             123             123 
             first part        second part  
Yield from: 
            25 initial         additional  
                 trees               trees 
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Conclusions and Recommendations 

Conclusions from Mary’s first two sessions on the avocado problem are organized 
around three main themes: iterative conception of quadratics, unit comparisons of rates and 
construction of schemes. Iterative Conception of Quadratics - Mary’s concept of 
“unaccounted for fruits” prompted a post-interview re-conceptualisation of quadratics 
primarily to unpack the product view iteratively. In contrast to Mary’s initial interpretation 
of perceiving loss only from the latest additional tree, the product view “c” interpreted loss 
to be from all trees. This was the main conceptual difference Mary tried to reconcile 
algebraically, procedurally and quantitatively in the t⇔c bridge equation. Iteratively, c is 
“ Total Yield = Previous yield + Yield from new tree – Loss from new tree – Loss of 10 
more per old tree”, and generalized algebraically as c = 12500 + ∑(500 – 10n) - ∑10((n + 
25) – 1). Clearly, the “unaccounted for fruits” Mary was seeking algebraically is another 
summation ∑10((n + 25) – 1). Conceptually and practically, it represents the distributed 
loss of 10 more per tree from old trees as a result of the latest additional tree. Most 
probably, with more time in the first session, Mary would have derived the algebraic 
expression (10(n + 25) - 1) by applying her linear schemes to the sequence 250, 260, 270, 
…. But beyond that, Mary would be faced yet again with another summation problematic. 
In spite of it, her initial preferred iterative and summative view of quadratics provided a 
viable contrast to the product view. Unit Comparisons of Rates - Mary’s struggles to 
develop appropriate formulas to represent preferred interpretations continuously led her to 
explicitly examine rates of changes as unit per unit comparisons. By applying linear 
schemes premised on constant additive rates of change and initial amounts, she constructed 
the expression “(500 - 10n)”. The quantity “unaccounted for fruits” was mediated 
meaningfully by numeric analyses of total yield values (t⇔c) and rates of changes 
(∆t→∆c→∆q) where ∆t and ∆c exemplified varying additive rates of change. In so doing, 
she spontaneously encountered differences of differences (∆q = ∆(∆t - ∆c) typically 
constant for quadratics), mainly to depict quantitatively and contextually the shortfall 
between the product and summative views. Construction of Schemes - Repeated iterations 
of the cyclic activities: problematics→actions→reflection whilst coordinating her dialectics 
between interpretations, multiple representations and context and simultaneously 
interacting with the researcher fostered the consolidation of Mary’s linear schemes, 
enhanced the consistency and convergence of her multiple representations, engineered the 
development of tentative quadratic schemes, and extended her reflectively abstracting 
experiences beyond constant additive rates to include varying ones. Finally, the realistic 
context invited alternative interpretations and engendered an enriched view of quadratic 
covariations. Their construction was meaningfully mediated by reflectively abstracting 
patterns from numeric analyses of tabular forms of rates and facilitated by using 
appropriate software. These findings provide empirical evidence of how students’ 
developing understanding and construction of quadratic modelling functions (algebraic 
representations) of situations are initially laden with competing interpretations and 
conflicting representations but with appropriate technological and teacher support could be 
scaffolded and guided towards a more convergent and cohesive conceptualisation. This 
nurturing approach and incorporation of contextual problems into regular classroom 
activities in schools should be encouraged to foster enriched, conceptual development of 
key ideas of functions such as rates, to enhance multiliteracies with multiple 
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representations, and to promote reflective and mathematical thinking and discussion in 
classrooms. 
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